Skip to main content

Test and Training Data Generation for Object Recognition in the Railway Domain

  • Conference paper
  • First Online:
Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops (SEFM 2022)

Abstract

AI development and test is a data driven endeavor. To date it is magnitudes more laborious to collect and annotate training and test data, than to provide a problem matching architecture and train it. In the KI-LOK project, a case study seeks to validate an object recognition system to prevent potentially fatal behavior of autonomous train operations. To accommodate for the vast amount of possible scenarios a train could encounter during operation, we propose a tool chain to automatically generate labeled synthetic images and videos. We start from an ontology of elements such as: Tracks, houses, vehicles or signals, these elements are then sampled and modeled in 3D to represent a scenario. Since the objects and locations of the elements in a scenario are known, no manual annotation or labeling of the data is required. By sampling from an ontology it will be possible to build comprehensive and balanced datasets of scenarios to train and test AI, while adding the benefit of corner case generation by reducing to certain elements in the ontology. This article reports on the current status of the project and the goals it tries to achieve.

Supported by the German Federal Ministry for Economic Affairs and Climate Action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.asam.net/project-detail/asam-openodd/.

  2. 2.

    https://www.asam.net/project-detail/asam-openxontology/.

References

  1. Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1813–1820 (2018). https://doi.org/10.1109/IVS.2018.8500632

  2. Czarnecki, K.: Operational world model ontology for automated driving systems - part 1: road structure. Technical report, Waterloo Intelligent Systems Engineering (WISE) Lab, University of Waterloo (2018). https://doi.org/10.13140/RG.2.2.15521.30568

  3. Czarnecki, K.: Operational world model ontology for automated driving systems - part 2: road users, animals, other obstacles, and environmental conditions. Technical report, Waterloo Intelligent Systems Engineering (WISE) Lab, University of Waterloo (2018). https://doi.org/10.13140/RG.2.2.11327.00165

  4. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017)

    Google Scholar 

  5. Fremont, D.J., et al.: Scenic: a language for scenario specification and data generation (2020). https://doi.org/10.48550/ARXIV.2010.06580

  6. Goodfellow, I., et al.: Generative adversarial networks. Adv. Neural Inf. Process. Syst. 3 (2014). https://doi.org/10.1145/3422622

  7. Herrmann, M., et al.: Using ontologies for dataset engineering in automotive AI applications. In: 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 526–531 (2022). https://doi.org/10.23919/DATE54114.2022.9774675

  8. Hoss, M., Scholtes, M., Eckstein, L.: A review of testing object-based environment perception for safe automated driving. Autom. Innov. (2022). https://doi.org/10.1007/s42154-021-00172-y

    Article  Google Scholar 

  9. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation (2017). https://doi.org/10.48550/ARXIV.1710.10196

  10. Khastgir, S.: Operational design domain (ODD) taxonomy for an automated driving system (ADS) - specification (2020)

    Google Scholar 

  11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). https://doi.org/10.48550/ARXIV.1312.6114

  12. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2009)

    Google Scholar 

  13. Medrano-Berumen, C., Akbaş, M.İ: Scenario generation for validating artificial intelligence based autonomous vehicles. In: Nguyen, N.T., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds.) ACIIDS 2020. LNCS (LNAI), vol. 12034, pp. 481–492. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42058-1_40

    Chapter  Google Scholar 

  14. Menzel, T., Bagschik, G., Isensee, L., Schomburg, A., Maurer, M.: From functional to logical scenarios: detailing a keyword-based scenario description for execution in a simulation environment (2019). https://doi.org/10.48550/ARXIV.1905.03989

  15. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents (2022). https://doi.org/10.48550/ARXIV.2204.06125

  16. Schuldt, F.: Ein Beitrag für den methodischen test von automatisierten Fahrfunktionen mit Hilfe von virtuellen Umgebungen. Ph.D. thesis, TU Braunschweig (2017). https://doi.org/10.24355/dbbs.084-201704241210

  17. Schultz, K.: Create 3D content for simulation using Ambit (2022). https://aws.amazon.com/blogs/industries/create-3d-content-for-simulation-using-ambit/

  18. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67361-5_40

    Chapter  Google Scholar 

  19. Tambon, F., et al.: How to certify machine learning based safety-critical systems? A systematic literature review. Autom. Softw. Eng. 29(2), 1–74 (2022). https://doi.org/10.1007/s10515-022-00337-x

    Article  Google Scholar 

  20. Thorn, E., Kimmel, S., Chaka, M.: A framework for automated driving system testable cases and scenarios. Technical report, National Highway Traffic Safety Administration (2018)

    Google Scholar 

  21. Urbieta, I., Nieto, M., García, M., Otaegui, O.: Design and implementation of an ontology for semantic labeling and testing: automotive global ontology (AGO). Appl. Sci. 11, 7782 (2021). https://doi.org/10.3390/app11177782

    Article  Google Scholar 

  22. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

Download references

Acknowledgement

We would like to thank Daniel Gottlob for his help in preparing this work. The research project “KI-Lokomotivesysteme - Prüfverfahren für KI-basierte Komponenten im Eisenbahnbetrieb” (abbreviated KI-LOK, project website: https://ki-lok.itpower.de/) is funded by the German Federal Ministry for Economic Affairs and Climate Action and managed by TÜV Rheinland (project no.: 19121007A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Werner Wiesbrock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grossmann, J. et al. (2023). Test and Training Data Generation for Object Recognition in the Railway Domain. In: Masci, P., Bernardeschi, C., Graziani, P., Koddenbrock, M., Palmieri, M. (eds) Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops. SEFM 2022. Lecture Notes in Computer Science, vol 13765. Springer, Cham. https://doi.org/10.1007/978-3-031-26236-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26236-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26235-7

  • Online ISBN: 978-3-031-26236-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics